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Abstract
An extended Landau–Lifshitz–Gilbert (LLG) equation is introduced to describe the dynamics
of inhomogeneous magnetization in a current-carrying wire. The coefficients of all the terms in
this equation are calculated quantum-mechanically for a simple model which includes impurity
scattering. This is done by comparing the energies and lifetimes of a spin wave calculated from
the LLG equation and from the explicit model. Two terms are of particular importance since
they describe non-adiabatic spin-transfer torque and damping processes which do not rely on
spin–orbit coupling. It is shown that these terms may have a significant influence on the velocity
of a current-driven domain wall and they become dominant in the case of a narrow wall.

1. Introduction

The effect of passing an electric current down a ferromagnetic
wire is of great current interest. If the magnetization is
inhomogeneous it experiences a spin-transfer torque due to the
current [1–4]. The effect is described phenomenologically by
adding terms to the standard LLG equation [5, 6]. The leading
term in the spin-transfer torque is an adiabatic one arising from
that component of the spin polarization of the current which
is in the direction of the local magnetization. However, in
considering the current-induced motion of a domain wall, Li
and Zhang [3, 4] found that below a very large critical current
the adiabatic term only deforms the wall and does not lead to
continuous motion. To achieve this effect they introduced [7]
a phenomenological non-adiabatic term associated with the
same spin non-conserving processes responsible for Gilbert
damping. Subsequently Kohno et al [8] derived a torque of
the Zhang–Li form quantum-mechanically using a model of
spin-dependent scattering from impurities. This may arise
from spin–orbit coupling on the impurities. A less explicit
discussion was given by Tserkovnyak et al [10]. More recently
Wessely et al [9] introduced two further non-adiabatic terms
in the LLG equation in order to describe their numerical
calculations of spin-transfer torques in a domain wall. These

quantum-mechanical calculations using the Keldysh formalism
were made in the ballistic limit without impurities and with
spin conserved. Other terms in the LLG equation, involving
mixed space and time derivatives, have been considered by
Sobolev et al [12], Tserkovnyak et al [10], Skadsem et al [11]
and Thorwart and Egger [13].

The object of this paper is to give a unified treatment
of all these terms in the LLG equation and to obtain explicit
expressions for their coefficients by quantum-mechanical
calculations for a simple one-band model with and without
impurity scattering. The strategy adopted is to consider a
uniformly magnetized wire and to calculate the effect of a
current on the energy and lifetime of a long wavelength
spin wave propagating along the wire. It is shown in
section 2 that coefficients of spin-transfer torque terms in the
LLG equation are directly related to q and q3 terms in the
energy and inverse lifetime of a spin wave of wavevector
q . The Gilbert damping parameter is the coefficient of the
ω term in the inverse lifetime, where ω is the spin wave
frequency. It corresponds to the damping of a q = 0
spin wave while higher order terms ωq and ωq2 relate to
damping of spin waves with finite wavevector q . The relation
between the q term in the spin wave energy and the adiabatic
spin-transfer torque has been noticed previously [2, 14]. We
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find that the q term in the spin wave lifetime relates to the
Zhang–Li non-adiabatic spin-transfer torque. Our result for
the coefficient of the Zhang–Li term is essentially the same
as that obtained by Kohno et al [8] and Duine et al [15]
but our derivation appears simpler. The q3 terms in the spin
wave energy and lifetime are related to the additional non-
adiabatic torques we introduced into the LLG equation [9],
together with an extra one arising from spin non-conserving
scattering. Explicit expressions for the coefficients of these
terms are obtained in section 3. In section 4 we discuss briefly
the importance of the additional terms in our extended LLG
equation for current-driven motion of a domain wall. Some
conclusions are summarized in section 5.

2. The LLG equation and spin waves

We write our extended LLG equation in the dimensionless
form

∂s
∂ t

+ αs × ∂s
∂ t

+ α1s × ∂2s
∂z ∂ t

− α′
1s ×

(
s × ∂2s

∂z ∂ t

)

− α′
2s × ∂3s

∂z2 ∂ t
− α2s ×

(
s × ∂3s

∂z2 ∂ t

)

= s × ∂2s
∂z2

− bexts × ez − a
∂s
∂z

− f s × ∂s
∂z

+ a1

{
s ×

(
s × ∂3s

∂z3

)
+

[
s · ∂2s

∂z2
− 1

2

(
∂s
∂z

)2]
∂s
∂z

}

− f1s ×
[

s × ∂

∂z

(
s × ∂2s

∂z2

)]
+ g1s × ∂3s

∂z3
. (1)

Here s(z, t) is a unit vector in the direction of the local spin
polarization, time t is measured in units of (γμ0ms)

−1 and the
coordinate z along the wire is in units of the exchange length
lex = (2A/μ0m2

s )
1/2. The quantities appearing here are the

gyroscopic ratio γ = 2μB/h̄, the permeability of free space
μ0 and two properties of the ferromagnetic material, namely
the saturation magnetization ms and the exchange stiffness
constant A. ez is a unit vector in the z direction along the
wire. The equation expresses the rate of change of spin angular
momentum as the sum of various torque terms, of which the
α1, α′

1, a, f , a1, f1 and g1 terms are proportional to the
electric current flowing. The second term in the equation is
the standard Gilbert term, with damping factor α, while the
α′

1 and α′
2 terms introduce corrections for spin fluctuations of

finite wavevector. Skadsem et al [11] point out the existence
of the α′

2 term but do not consider it further. It was earlier
introduced by Sobolev et al [12] within a microscopic context
based on the Heisenberg model. The α1 and α2 terms are
found to renormalize the spin wave frequency, but for the
model considered in section 3 we find that α1 is identically
zero. We shall argue that this result is model independent.
Tserkovnyak et al [10] and Thorwart and Egger [13] find non-
zero values of α1 which differ from each other by a factor 2;
they attribute this to their use of Stoner-like and s–d models,
respectively. Thorwart and Egger [13] also find the α′

1 term and
they investigate the effect of α1 and α′

1 terms on domain wall
motion. Their numerical results are difficult to assess because
the constant |s| = 1 is not maintained during the motion. In

equation (1) we have omitted terms involving the second order
time derivatives, whose existence was pointed out by Thorwart
and Egger [13]; one of these is discussed briefly in section 3.2.

The first term on the right-hand side of equation (1) is
due to exchange stiffness and the next term arises from an
external magnetic field Bextez with dimensionless coefficient
bext = Bext/μ0ms. The third term is the adiabatic spin-transfer
torque whose coefficient a is simple and well known. In
fact [3, 4]

a = 1

2

h̄ J P

eμ0m2
s lex

(2)

where J is the charge current density and e is the electron
charge (a negative quantity). The spin polarization factor
P = (J↑ − J↓)/(J↑ + J↓), where J↑, J↓ are the current
densities for majority and minority spin in the ferromagnet
(J = J↑ + J↓). Equation (2) is valid for both ballistic
and diffusive conduction. The fourth term on the right-hand
side of equation (1) is the Zhang–Li torque which is often
characterized [8] by a parameter β = f/a. The next term is
the E1 term of equation (7) in [9]. It is a non-adiabatic torque
which is coplanar with s(z) if s(z) lies everywhere in a plane.
As shown in [9] it is the z derivative of a spin current, which
is characteristic of a torque occurring from spin-conserving
processes. In fact this term takes the form

a1
∂

∂z

[
s ×

(
s × ∂2s

∂z2

)
− 1

2
s
(

∂s
∂z

)2]
. (3)

The f1 term may be written in the form

− f1

(
s · ∂s

∂z
× ∂2s

∂z2

)
s + f1

∂

∂z

(
s × ∂2s

∂z2

)
. (4)

If s(z) lies in a plane, the case considered in [9], the first
term vanishes and we recover the F1 term of equation (9)
in [9]. Its derivative form indicate that it arises from spin-
conserving processes so we conclude that the coefficient f1 is
of that origin. This is not true of the last term in equation (1)
and we associate the coefficient g1 with spin non-conserving
processes. For a spin wave solution of the LLG equation,
where we work only to first order in deviations from a state
of uniform magnetization, the last three terms of equation (1)
may be replaced by the simpler ones

−a1
∂3s
∂z3

+ ( f1 + g1)s × ∂3s
∂z3

. (5)

Apart from additional terms, equation (1) looks slightly
different from equation (7) of [9] because we use the spin
polarization unit vector s rather than the magnetization vector
m and s = −m. Furthermore the dimensionless coefficients
will take different numerical values because we have used
different dimensionless variables z and t to avoid introducing
the domain wall width which was specific to [9]. The torques
due to anisotropy fields were also specific to the domain wall
problem and have been omitted in equation (1).

We suppose that the wire is magnetized uniformly in the
z direction and consider a spin wave as a small transverse
oscillation of the spin polarization about the equilibrium state

2
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or, when a current flows, the steady state. Thus we look for a
solution of equation (1) of the form

s = (cei(qz−ωt), dei(qz−ωt),−1) (6)

where the coefficients of the x and y components satisfy c �
1, d � 1. This represents a spin wave of wavevector q and
angular frequency ω propagating along the z axis. When (6) is
substituted into equation (1) the transverse components yield,
to first order in c and d , the equations

−iλc + μd = 0, μc + iλd = 0 (7)

where

λ = ω − aq + a1q3 − α2ωq2 + iα′
1qω

μ = −iαω + bext + q2 + i f q

+ i( f1 + g1)q
3 + α1ωq − iωq2α′

2.

(8)

On eliminating c and d from equation (7) we obtain λ2 = μ2.
To obtain a positive real part for the spin wave frequency, we
take λ = μ. Hence

ω(1 − α1q − α2q2) = bext + aq + q2 − a1q3

+ i[ω(−α − α′
1q − α′

2q2) + f q + ( f1 + g1)q
3]. (9)

Thus the spin wave frequency is given by

ω = ω1 − iω2 (10)

where

ω1 � (1 − α1q − α2q2)−1(bext + aq + q2 − a1q3)

ω2 � (1 − α1q − α2q2)−1[ω1(α + α′
1q + α′

2q2)

− f q − ( f1 + g1)q
3].

(11)

Here we have neglected terms of second order in α, α′
1, α′

2,
f , f1 and g1, the coefficients which appear in the spin wave
damping. This form for the real and imaginary parts of the
spin wave frequency is convenient for comparing with the
quantum-mechanical results of section 3. In this way we
shall obtain explicit expressions for all the coefficients in the
phenomenological LLG equation. Coefficients of odd powers
of q are proportional to the current flowing whereas terms in
even powers of q are present in the equilibrium state with zero
current.

3. Spin wave energy and lifetimes in a simple model

As a simple model of an itinerant electron ferromagnet we
consider the one-band Hubbard model

H0 = −t
∑
i jσ

c†
iσ c jσ + U

∑
i

ni↑ni↓ −μB Bext

∑
i

(ni↑ − ni↓),

(12)
where c†

iσ creates an electron on site i with spin σ and niσ =
c†

iσ ciσ . We consider a simple cubic lattice and the intersite
hopping described by the first term is restricted to nearest
neighbours. The second term describes an on-site interaction
between electrons with effective interaction parameter U ; the

last term is due to an external magnetic field. It is convenient
to introduce a Bloch representation, with

c†
kσ = 1√

N

∑
i

ek·Ri c†
iσ , nkσ = c†

kσ ckσ , (13)

εk = −t
∑

i

eik·ρi = −2t (cos kxa0 + cos kya0 + cos kza0).

(14)
The sum in equation (13) is over all lattice cites Ri whereas
in equation (14) ρi = (±a0, 0, 0), (0,±a0, 0), (0, 0,±a0) are
the nearest neighbour lattice sites. Then

H0 =
∑
kσ

εknkσ + U
∑

i

ni↑ni↓ − μB Bext

∑
k

(nk↑ − nk↓).

(15)
To discuss scattering of spin waves by dilute impurities we
assume that the effect of the scattering from different impurity
sites adds incoherently; hence we may consider initially a
single scattering centre at the origin. We therefore introduce
at this site a perturbing potential u + vl · σ , where l =
(sin θ cos φ, sin φ sin θ, cos θ) is a unit vector whose direction
will finally be averaged over. u is the part of the impurity
potential which is independent of the spin σ and the spin-
dependent potential vl · σ is intended to simulate a spin–orbit
L · σ interaction on the impurity. It breaks spin rotational
symmetry in the simplest possible way. Clearly spin–orbit
coupling can only be treated correctly for a degenerate band
such as a d-band, where on-site orbital angular momentum L
occurs naturally. The present model is equivalent to that used
by Kohno et al [8] and Duine et al [15]. In Bloch representation
the impurity potential becomes V = V1 + V2 with

V1 = v↑
1

N

∑
k1k2

c†
k1↑ck2↑ + v↓

1

N

∑
k1k2

c†
k1↓ck2↓

V2 = ve−iφ sin θ
1

N

∑
k1k2

c†
k1↑ck2↓

+ veiφ sin θ
1

N

∑
k1k2

c†
k1↓ck2↑

(16)

and v↑ = u + v cos θ , v↓ = u − v cos θ . To avoid confusion
we note that the spin dependence of the impurity potential
which occurs in the many-body Hamiltonian H0 +V is not due
to exchange, as would arise in an approximate self-consistent
field treatment (e.g. Hartree–Fock) of the interaction U in a
ferromagnet.

3.1. Spin wave energy and wavefunction

In this section we neglect the perturbation due to impurities
and determine expressions for the energy and wavefunction
of a long wavelength spin wave in the presence of an electric
current. The presence of impurities is recognized implicitly
since the electric current is characterized by a perturbed one-
electron distribution function fkσ which might be obtained
by solving a Boltzmann equation with a collision term. We
consider a spin wave of wavevector q propagating along
the z axis, which is the direction of current flow. Lengths
and times used in this section and the next, except when

3
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specified, correspond to actual physical quantities, unlike the
dimensionless variables used in section 2.

We first consider the spin wave with zero electric current
and treat it, within the random phase approximation (RPA), as
an excitation from the Hartree–Fock (HF) ground state of the
Hamiltonian (15). The HF one-electron energies are given by

Ekσ = εk + U〈n−σ 〉 − μBσ Bext (17)

where σ = 1,−1 for ↑ and ↓ respectively, and 〈n−σ 〉 is the
number of −σ spin electrons per site. In a self-consistent
ferromagnetic state at T = 0, 〈nσ 〉 = N−1

∑
k fkσ and

n = ∑
σ 〈nσ 〉, where, fkσ = θ(EF − Ekσ ), n is the number

of electrons per atom, and EF is the Fermi energy. N is the
number of lattice sites and θ(E) is the unit step function. The
spin bands Ekσ given by equation (17) are shifted relative to
each other by an energy � + 2μB Bext where � = U〈n↑ −
n↓〉 is the exchange splitting. The ground state is given by
|0〉 = ∏

kσ c†
kσ | 〉 where | 〉 is the vacuum state and the product

extends over all states kσ such that fkσ = 1. Within the RPA,
the wavefunction for a spin wave of wavevector q, excited from
the HF ground state, takes the form

|q〉 = Nq

∑
k

Akc†
k+q↓ck↑|0〉 (18)

where Nq is a normalization factor. The energy of this state
may be written

Eq = Egr + h̄ωq = Egr + 2μB Bext + h̄ω′
q (19)

where Egr is the energy of the HF ground state and h̄ωq is
the spin wave excitation energy. On substituting (18) in the
Schrödinger equation (H0 − Eq)|q〉 = 0 and multiplying on
the left by 〈0|c†

k′↑ck′−q↓, we find

Ak′(εk′+q −εk′ +�− h̄ω′
q) = U

N

∑
k

Ak fk↑(1− fk+q↓). (20)

Hence we may take

Ak = �(εk+q − εk + � − h̄ω′
q)

−1 (21)

and, for small q, h̄ω′
q satisfies the equation

1 = U

N

∑
k

fk↑ − fk+q↓
εk+q − εk + � − h̄ω′

q
. (22)

This is the equation for the poles of the well-known RPA
dynamical susceptibility χ(q, ω) [16]. The spin wave pole is
the one for which h̄ω′

q → 0 as q → 0.
To generalize the above considerations to a current-

carrying state we proceed as follows. We re-interpret the state
|0〉 such that 〈0| · · · |0〉 corresponds to a suitable ensemble
average with a modified one-electron distribution fkσ . When
a current flows in the z direction we may consider the ↑ and
↓ spin Fermi surfaces as shifted by small displacements δ↑k̂z ,
δ↓k̂z where k̂z is a unit vector in the z direction. Thus

fkσ = θ(EF − Ek+δσ k̂z ,σ
)

� θ(EF − Ekσ ) − δσ δ(EF − Ekσ )
∂εk

∂kz
(23)

and the charge current density carried by spin σ electrons is

Jσ = e

h̄ Na3
0

∑
k

∂εk

∂kz
fkσ = − eδσ

h̄ Na3
0

∑
k

(
∂εk

∂kz

)2

δ(EF − Ekσ )

= − eδσ

h̄a3
0

〈(
∂εk

∂kz

)2〉
σ

ρσ (EF) (24)

where 〈(∂εk/∂kz)
2〉σ is an average over the σ spin Fermi

surface and ρσ (EF) is the density of σ spin states per atom at
the Fermi energy. We shall also encounter the following related
quantities;

Kσ = 1

N�2a3
0

∑
k

∂εk

∂kz

∂2εk

∂k2
z

fkσ

= h̄ Jσ

�2e

〈(
∂εk

∂kz

)2
∂2εk

∂k2
z

〉
σ

/〈(
∂εk

∂kz

)2〉
σ

(25)

Lσ = 1

N�3a3
0

∑
k

(
∂εk

∂kz

)3

fkσ

= h̄ Jσ

�3e

〈(
∂εk

∂kz

)4〉
σ

/〈(
∂εk

∂kz

)2〉
σ

. (26)

To derive equations (25) and (26), δσ has been eliminated using
equation (24).

To solve equation (22) for h̄ω′
q we expand the right-hand

side of the equation in powers of (εk+q − εk − h̄ω′
q)/� and

make the further expansions

εk+q − εk = q
∂εk

∂kz
+ 1

2
q2 ∂2εk

∂k2
z

+ 1

6
q3 ∂3εk

∂k3
z

· · · (27)

h̄ω′
q = Bq + Dq2 + Eq3 + · · · (28)

in powers of q . We retain all terms up to q3 except those
involving B2; the coefficients B and E are proportional to the
current and we keep only terms linear in the current. Hence we
find a solution of equation (22) in the form (28) with

B = 1

N↑ − N↓

∑
k

( fk↑ − fk↓)
∂εk

∂kz

= Na3
0

N↑ − N↓
h̄

e
(J↑ − J↓) (29)

D = 1

N↑ − N↓

[
1

2

∑
k

( fk↑ + fk↓)
∂2εk

∂k2
z

− 1

�

∑
k

( fk↑ − fk↓)

(
∂εk

∂kz

)2]
(30)

E = −a2
0 B

6
+ B

(N↑ − N↓)�

×
[∑

k

( fk↑ + fk↓)
∂2εk

∂k2
z

− 3

�

∑
k

( fk↑ − fk↓)

(
∂εk

∂kz

)2]

− Ua3
0

∑
σ

(Kσ − σ Lσ ). (31)

Here Nσ is the total number of σ spin electrons so that Nσ =
N〈nσ 〉.

In the absence of spin–orbit coupling the expression for
B in terms of spin current is a general exact result even in the

4
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presence of disorder, as shown in the appendix. The coefficient
D is the standard RPA spin wave stiffness constant (e.g. [16]).
We note that, in the limit � → ∞, E takes the simple form
−a2

0 B/6.
On restoring the correct dimensions (as indicated after

equation (1)) to the expression for ω1 in equation (11) we
may determine the coefficients a and a1 by comparing with
the equation

h̄ωq = 2μB Bext + Bq + Dq2 + Eq3. (32)

From the coefficient of q we have

a + α1bext = B/(2μBμ0mslex). (33)

a and B are both determined directly from the spin current
J P independently of a particular model (see the appendix)
so that bext should not enter their relationship. We conclude
quite generally that α1 = 0. In this case we find that on
combining equations (33) and (29), and noting that ms =
−μB(N↑ − N↓)/Na3

0 , equation (2) is obtained as expected.
In section 3.2 we show explicitly for the present model that
α1 = 0. This conflicts with the results of [10] and [13].
From the coefficients of q2 in equations (11) and (32) we find
1 + α2bext = D/(4μB A/ms). Thus an external field slightly
disturbs the standard relation A = Dms/4μB. However in
the spirit of the LLG equation we take A and ms, which
enter the units of length and time used in equation (1), to be
constants of the ferromagnetic material in zero external field.
The coefficients of q3 in equations (11) and (32) yield the
relation (taking α1 = 0),

−a1 + α2a = E/(2μBμ0msl
3
ex). (34)

We defer calculation of α2 until section 3.2 and the result is
given in equation (44). Combining this with equations (34)
and (31) we find

2μBμ0msl
3
exa1 = a2

0 B

6
− 2B D

�
+Ua3

0

∑
σ

(Kσ −σ Lσ ). (35)

We have thus derived an explicit expression, for a simple
model, for the coefficient a1 of a non-adiabatic spin torque
term which appears in the LLG equation (1). We have
neglected the effect of disorder due to impurities. In the
absence of spin–orbit coupling the expression for the adiabatic
torque coefficient a, given by equation (2), is exact even
in presence of impurities. In section 3.2 we shall calculate
further non-adiabatic torque terms, with coefficients f1 and
g1, as well as damping coefficients α, α′

1 and α′
2. In the

present model all these depend on impurity scattering for their
existence.

3.2. Spin wave lifetime

The solutions of equation (22) are shown schematically in
figure 1. They include the spin wave dispersion curve and
the continuum of Stoner excitations c†

k+q↓ck↑|0〉 with energies
Ek+q↓−Ek↑. The Zeeman gap 2μB Bext in the spin wave energy
at q = 0 does not appear because we have plotted h̄ω′

q rather

Figure 1. Spin-flip excitations from the ferromagnetic ground state.
The dotted arrow shows the mechanism of decay of a spin wave into
Stoner excitations which is enabled by the impurity potential V1.

than h̄ωq (see equation (19)). Within the present RPA the spin
wave in a pure metal has infinite lifetime outside the continuum
and cannot decay into Stoner excitations owing to conservation
of the momentum q. However, when the perturbation V1 due to
impurities is introduced (see equation (16)), crystal momentum
is no longer conserved and such decay processes can occur.
These are shown schematically by the dotted arrow in figure 1.
If the bottom of the ↓ spin band lies above the Fermi level there
is a gap in the Stoner spectrum and for a low energy (small q)
spin wave such processes cannot occur. However the spin-flip
potential V2 enables the spin wave to decay into single particle
excitations c†

k+qσ ckσ |0〉 about each Fermi surface and these do
not have an energy gap.

The inverse lifetime τ−1
q of a spin wave of wavevector q is

thus given simply by the ‘golden rule’ in the form

τ−1
q = 2π

h̄
Nimp(T1 + T2) (36)

where Nimp is the number of impurity sites and

T1 =
∑
kp

|〈0|c†
k↑cp↓V1|q〉|2 fk↑(1 − fp↓)

× δ(h̄ωq − Ep↓ + Ek↑)

T2 =
∑
kpσ

|〈0|c†
kσ cpσ V2|q〉|2 fkσ (1 − fpσ )

× δ(h̄ωq − εp + εk).

(37)

We first consider T1 and, using equations (16) and (18),
we find

〈0|c†
k↑cp↓V1|q〉 = Nq

N
fk↑(1 − fp↓)

× [Akv↓(1 − fp↓) − Ap−qv↑ fp−q↑]
= Nq

N
fk↑(1 − fp↓)(Akv↓ − Ap−qv↑) (38)

for small q . The last line follows from two considerations.
Firstly, because of the δ-function in equations (37) we can
consider the states k↑ and p↓ to be close to their respective
Fermi surfaces. Secondly the ↓ spin Fermi surface lies within

5
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the ↑ Fermi surface and q is small. Hence

T1 = N2
q

N2

∑
kp

fk↑(1 − fp↓)δ(h̄ωq − Ep↓ + Ek↑)

× (Akv↓ − Ap−qv↑)2. (39)

To evaluate this expression in the case when a current flows we
use the distribution function fkσ given by equation (23). Thus,
neglecting a term proportional to the square of the current, we
have

T1 = N2
q

N2

∑
kp

δ(h̄ωq − Ep↓ + Ek↑)

× (Akv↓ − Ap−qv↑)2

[
θ(EF − Ek↑)θ(Ep↓ − EF)

− δ↑θ(Ep↓ − EF)δ(EF − Ek↑)
∂εk

∂kz

+ δ↓θ(EF − Ek↑)δ(EF − Ep↓)
∂εp

∂pz

]
. (40)

We wish to expand this expression, and a similar one for
T2, in powers of q to O(q3) so that we can compare with
the phenomenological expression (equations (11)) for the
imaginary part of the spin wave frequency, which is given by
τ−1

q /2. It is straightforward to expand the second factor in
the above sum by using equations (21) and (28). We shall
show that the contribution to T1 of the first term in square
brackets in equation (40) leads to a contribution proportional to
spin wave frequency ωq. Together with a similar contribution
to T2 it yields the Gilbert damping factor α as well as the
coefficients α′

1, α′
2 of the terms in equations (11) which give

the q dependence of the damping. The remaining terms in
equation (40) yield the spin-transfer torque coefficients f , f1

and g1.
The normalization factor N2

q which appear in equa-
tion (40) leads naturally to the factor (1−α1q −α2q2)−1 which
appears in equations (11). From equation (18) it is given by

1 = 〈q|q〉 = N2
q

N

∑
k

(A2
k fk↑ − A2

k−q fk↓). (41)

By expanding A2
k−q in powers of q , and using equation (23),

we find to O(q2) that

N−2
q = (N↑ − N↓)

{
1 + q2

�2(N↑ − N↓)

∑
k

(
∂εk

∂kz

)2

× [θ(EF − Ek↑) − θ(EF − Ek↓)]
}
. (42)

We deduce that
α1 = 0 (43)

and

α2 = − 1

l2
ex�

2(N↑ − N↓)

∑
k

(
∂εk

∂kz

)2

× [θ(EF − Ek↑) − θ(EF − Ek↓)]. (44)

The result α1 = 0, which was predicted on general grounds
in section 3.1 and in appendix 1, arises here through the

absence of a q term, proportional to current, in the spin wave
normalization factor. In the derivation of equation (42) this
occurs due to a cancellation involving the Bq terms in the
spin energy, which appears in Ak. Without this cancellation
we would have α1 = 2B/ lex� which is of the form obtained
by Tserkovnyak et al [10] and Thorwart and Egger [13].

We now return to the programme for calculating the
LLG coefficients α, α′

1, α
′
2, f, f1, g1 which was outlined after

equation (40). We have seen that the q dependence of N2
q

corresponds to the prefactor in equations (11). Hence to
determine the coefficients listed above we can take N2

q =
N2

0 = (N↑ − N↓)−1 in T1 and T2 when we expand terms in
powers of q to substitute in equation (36) and compare with
equations (11). We first consider the case q = 0 in order
to determine the Gilbert damping factor α. Thus only the
first term in square brackets in equation (40) contributes, since
∂εk/∂kz is an odd function kz , and

T1(q = 0) = 4v2cos2 θ

N↑ − N↓
N−2

∑
kp

δ(h̄ω0 − Ep↓ + Ek↑)

× θ(EF − Ek↑)θ(Ep↓ − EF) (45)

where cos2 θ is an average over the angle appearing in the
impurity potential V (equations (16)) and we shall assume
cos θ = 0. The summations in equation (45) may be replaced
by energy integrals involving the density of states of per atom
ρσ (ε) of the states Ekσ . Then, to order (h̄ω0)

2,

T1(q = 0) =
[

4v2cos2 θ

N↑ − N↓

]

× [h̄ω0ρ↑ρ↓ + 1
2 (h̄ω0)

2(ρ↑ρ ′
↓ − ρ ′

↑ρ↓)] (46)

where ρσ (ε) and its derivative ρ ′
σ (ε) are evaluated at ε = EF.

Similarly

T2(q = 0) =
[

v2sin2 θ

N↑ − N↓

]
h̄ω0(ρ

2
↑ + ρ2

↓) (47)

and no ω2
0 terms appear. We have included the ω2

0 term in
equation (46) merely because it corresponds to a term s ×
(s × ∂2s

∂ t2 ) in the LLG equation whose existence was noted by
Thorwald and Egger [13]. We shall not pursue terms with
second order time derivatives any further. Since the imaginary
part of the spin wave frequency is given by τ−1

q /2 it follows
from equations (11), (36), (46) and (47) that

α = πcv2

〈n↑ − n↓〉 [4cos2 θρ↑ρ↓ + sin2 θ(ρ2
↑ + ρ2

↓)], (48)

where c = Nimp/N is the concentration of impurities, in
agreement with Kohno et al [8] and Duine et al [15]. If
the direction of the spin quantization axis of the impurities is

distributed randomly cos2 θ = 1/3, sin2 θ = 2/3 so that α is
proportional to (ρ↑ + ρ↓)2.

To investigate the q dependence of Gilbert damping, and
thus evaluate α′

1 and α′
2 in equations (11), the second factor in

the summation of equation (40) must be expanded in powers
of q . All the terms which contribute to the sum are of
separable form g(k)h(p). The contribution to T1 of interest

6
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here, proportional to ωq, again arises from the first term in
square brackets in equation (40), and similarly for T2. The
summations required in equation (40) are of the form∑
kp

δ(h̄ωq − Ep↓ + Ek↑)θ(EF − Ek↑)θ(Ep↓ − EF)g(k)h(p)

= 〈g(k)〉↑〈h(k)〉↓ρ↑ρ↓h̄ωq (49)

where 〈g(k)〉σ = N−1
∑

k g(k)δ(EF− Ekσ ) is an average over
the Fermi surface, as used previously in section 3.1. After some
algebra we find

α′
1 = 2Bα/�lex (50)

α′
2 = πc

〈n↑ − n↓〉l2
ex�

2

{
ρ↑ρ↓(u2 + 5v2cos2 θ)

×
∑

σ

〈(
∂εk

∂kz

)2〉
σ

− 2ρ↑ρ↓�v2cos2 θ
∑

σ

σ

〈
∂2εk

∂k2
z

〉
σ

− v2sin2 θ

[
�

∑
σ

σρ2
σ

〈
∂2εk

∂k2
z

〉
σ

− 3
∑

σ

ρ2
σ

〈(
∂εk

∂kz

)2〉
σ

]}
+ 2Dα

�l2
ex

. (51)

We note that, unlike α and α′
1, the coefficient α′

2 is non-zero
even when the spin-dependent part of the impurity potential, v,
is zero. In this case the damping of a spin wave of frequency
ω and small wavevector q is proportional to ρ↑ρ↓u2ωq2. In
zero external field ω ∼ q2 so that the damping is of order q4.
This damping due to spin-independent potential scattering by
impurities was analysed in detail by Yamada and Shimizu [17].
One of the Fermi surface averages in equation (51) is easily
evaluated using equations (14) and (17). Thus〈
∂2εk

∂k2
z

〉
σ

= −a2
0

3
〈εk〉σ

= −a2
0

3
(E f − U〈n−σ 〉 + σμB Bext). (52)

In the spirit of the LLG equation we should take Bext = 0 in
evaluating the coefficients α′

2.
We now turn to the evaluation of the non-adiabatic spin-

transfer torque coefficients f, f1 and g1. These arise from the
second and third terms in square brackets in equation (40), and
in a similar expression for T2. The summations involved in
these terms differ from those in equation (49) since one θ -
function is replaced by a δ-function. This leads to the omission
of the frequency factor h̄ωq. The Fermi surface shifts δσ are
eliminated in favour of currents Jσ by using equation (24).

By comparing the coefficient of q in the expansion of
equation (36) with that in equation (11) we find the coefficient
of the Zhang–Li torque in the form

f = πcv2

μ0m2
s �lex

h̄

e
[2cos2 θ(ρ↑ J↓ − ρ↓ J↑)

+ sin2 θ(ρ↓ J↓ − ρ↑ J↑)]. (53)

This is in agreement with Kohno et al [8] and Duine et al
[15]. In the ‘isotropic’ impurity case, with cos2 θ = 1/3,

sin2 θ = 2/3, it follows from equations (53), (48) and (2) that

β = f

a
= α

2

U(ρ↑ + ρ↓)
. (54)

In the limit of a very weak itinerant ferromagnet ρσ → ρ, the
paramagnetic density of states, and Uρ → 1 by the Stoner
criterion. Thus in this limit β = α. Tserkovnyak et al
[10] reached a similar conclusion. For a parabolic band it is
straightforward to show from Stoner theory that β/α > 1 and
may be as large as 1.5.

As discussed in section 2 the coefficient f1 is associated
with spin-conserving processes, and hence involves the spin-
independent potential u. The coefficient g1 is associated with
spin non-conserving processes and involves v. By comparing
the coefficient of q3 in the expansion of equation (36) with that
in equation (11) we deduce that

f1 = πc

2μ0m2
s l3

ex

u2(K1 + 2L1 + M1) (55)

and

g1 = 1

l2
ex

(
3D

�
− a2

0

6

)
f + πcv2

2μ0m2
s l3

ex

× [cos2 θ(5K1 + 6L1 − M1) + sin2 θ(3K2 + 4L2)].
(56)

Here
K1 = K↓ρ↑ + K↑ρ↓, K2 = K↓ρ↓ + K↑ρ↑

L1 = L↓ρ↑ − L↑ρ↓, L2 = L↓ρ↓ − L↑ρ↑

M1 = h̄

e�3

∑
σ

[
2σ

〈(
∂εk

∂kz

)2〉
−σ

+ �

〈
∂2εk

∂k2
z

〉
−σ

]
Jσ ρ−σ .

(57)

This complete the derivation of expressions for all the LLG
coefficients of equation (1) within the present impurity model

4. The extended LLG equation applied to
current-driven domain wall motion

In a previous paper [9] we introduced the a1 and f1 terms of
the extended LLG equation (cf equations (1), (3) and (4)) in
order to describe numerically-calculated spin-transfer torques
acting on a domain wall when it is traversed by an electric
current. In that work the origin of the small f1 term for
a pure ferromagnetic metal was specific to the domain wall
problem; it was shown to be associated with those electronic
states at the bulk Fermi surface which decay exponentially as
they enter the wall. The analytic derivation of f1 in section 3
(see equation (55)) is based on impurity scattering in the
bulk ferromagnet and applies generally to any slowly-varying
magnetization configuration. For a ferromagnetic alloy such as
permalloy both mechanisms should contribute in the domain
wall situation but the impurity contribution would be expected
to dominate.

To describe a domain wall we must add to the right-hand
side of equation (1) anisotropy terms of the form

−(s · ey)s × ey + b−1(s · ez)s × ez, (58)

where ey is a unit vector perpendicular to the plane of the wire.
The first term corresponds to easy plane shape anisotropy for

7
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a wire whose width is large compared with its thickness and
the second term arises from a uniaxial field Hu along the wire,
so that b = ms/Hu. The solution of equation (1), with the
additional terms (58), for a stationary Néel wall in the plane of
the wire, with zero external field and zero current, is

s = (sech(z/b1/2), 0,− tanh(z/b1/2)). (59)

As pointed out in [9] there is no solution of the LLG equation of
the form s = F(z−vWt), corresponding to a uniformly moving
domain wall, when the f1 term is included. It is likely that the
wall velocity oscillates about an average value, as predicted by
Tatara and Kohno [18, 19] for purely adiabatic torque above
the critical current density for domain wall motion. However,
we may estimate the average velocity vW using the method
of [9]. The procedure is to substitute the approximate form
s = F(z − vWt) in the extended LLG equation (1), with the
terms (58) added, take the scalar product with F × F′ and
integrate with respect to z over the range (−∞,∞). The
boundary conditions appropriate to the wall are s → ∓ez as
z → ±∞. Hence for bext = 0 we find the dimensionless wall
velocity to be

vW =
f
∫ ∞
−∞(F × F′)2 dz + f1

∫ ∞
−∞(F × F′′)2 dz + g1

∫ ∞
−∞(F′′)2 dz

α
∫ ∞
−∞(F × F′)2 dz + α′

2

∫ ∞
−∞(F′′)2 dz

.

(60)

To estimate the integrals we take F(z) to have the form of
the stationary wall s(z) (equation (59)) and, with the physical
dimensions of velocity restored, the wall velocity is given
approximately by

vW = v0
β

α

1 + f1(3 f b)−1

1 + α′
2(αb)−1

(61)

where v0 = μB P J/(mse). We have neglected g1 here because,
like f and α, it depends on spin–orbit coupling but is a factor
(a0/ lex)

2 smaller than f (cf equations (53) and (56)). f1 and
α′

2 are important because they do not depend on spin–orbit
coupling.

It is interesting to compare vW with the wall velocity
observed in permalloy nanowires by Hayashi et al [20]. We
first note that v0 is the velocity which one obtains very simply
from spin angular momentum conservation if the current-
driven wall moves uniformly without any distortion such as
tilting out of the easy plane and contraction [21]. This is never
the case, even if f1 = 0, α′

2 = 0, unless β = α. For a
permalloy nanowire, with μ0ms = 1 T, v0 = 110P m s−1 for
J = 1.5 × 108 A cm−2. Thus, from the standard theory with
f1 = 0, α′

2 = 0, vW = 110Pβ/α m s−1 for this current density.
In fact Hayashi et al [20] measure a velocity of 110 m s−1

which implies β > α since the spin polarization P is certainly
less than 1. They suggest that β cannot exceed α and that
some additional mechanism other than spin-transfer torque is
operating. However in the discussion following equation (54)
we pointed out that in the model calculations it is possible to
have β > α. Even if this is not the case in permalloy we
can still have vW > v0 if the last factor in equation (61) is

greater than 1 when f1 and α′
2 are non-zero. We can estimate

terms in this factor using the observation from [20], that lW =
lexb1/2 = 23 nm, where lW is the width of the wall. From
equations (53) and (55) we find f1/( f b) ∼ (u/v)2(kFlW)−2,
where kF is a Fermi wavevector. In permalloy we have Fe
impurities in Ni so that in the impurity potential u + v · σ

we estimate u ∼ 1 eV and v ∼ 0.005 eV. The value for v

is estimated by noting that the potential v · σ is intended to
model spin–orbit coupling of the form ξL ·σ with ξ � 0.1 eV
and 〈Lz〉Fe ∼ 0.05, Lz being the component of orbital angular
momentum in the direction of the magnetization [22]. Hence
u/v ∼ 200 and kFlW ∼ 200 so that f1/( f b) ∼ 1. α′

2/(αb)

is expected to be of similar magnitude. We conclude that the
α′

2 and f1 terms in the LLG equation (1) can be important in
domain wall motion and should be included in micromagnetic
simulations such as OOMMF [23]. For narrower domain walls
these terms may be larger than the Gilbert damping α and
non-adiabatic spin-transfer torque f terms which are routinely
included. Reliable estimates of their coefficients are urgently
required using realistic multiband models of the ferromagnetic
metal or alloy.

5. Conclusions

The coefficients of all the terms in an extended LLG equation
for a current-carrying ferromagnetic wire have been calculated
for a simple model. Two of these ( f1 and α′

2) are of particular
interest since they do not rely on spin–orbit coupling and
may sometimes dominate the usual damping and non-adiabatic
spin-transfer torque terms. One term (α1) which has been
introduced by previous authors is shown rigorously to be zero,
independent of any particular model. Solutions of the extended
LLG equation for domain wall motion have not yet been found
but the average velocity of the wall is estimated. It is pointed
out that the f1 and α′

2 terms are very important for narrow
walls and should be included in micromagnetic simulations
such as OOMMF. It is shown that there is no theoretical reason
why the wall velocity should not exceed the simplest spin-
transfer estimate v0, as is found to be the case in experiments
on permalloy by Hayashi et al [20].
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Appendix

The simple single-band impurity model used in the main text is
useful for obtaining explicit expressions for all the coefficients
in the LLG equation (1). Here we wish to show that some of
these results are valid for a completely general system. We
suppose the ferromagnetic material is described by the many-
body Hamiltonian

H = H1 + Hint + Hext (A.1)

8
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where H1 is a one-electron Hamiltonian of the form

H1 = Hk + Hso + V . (A.2)

Here Hk is the total electron kinetic energy, Hso is the spin–
orbit interaction, V is a potential term, Hint is the coulomb
interaction between electrons and Hext is due to an external
magnetic field Bext in the z direction. Thus

Hext = −2μBSz
0 Bext (A.3)

where S0
z is the z component of total spin. Both Hso and V

can contain disorder. Since we are interested in the energy and
lifetime of a long wavelength spin wave we consider the spin
wave pole, for small q , of the dynamical susceptibility.

χ(q, ω) =
∫

dt〈〈S−
q (t), S+

−q〉〉e−iω− t (A.4)

(ω− = ω − iε) where S±
q = Sx

q ± iSy
q are Fourier components

of the total transverse spin density. Here

〈〈S−
q (t), S+

−q〉〉 = i

h̄
〈[S−

q (t), S+
−q]〉θ(t). (A.5)

In general we shall take the average 〈 〉 in a steady state in
which a charge current density J is flowing in the q direction.
Following the general method of Edwards and Fisher [24] we
use equations of motion to find that

χ(q, ω) = − 2〈Sz
0〉

h̄(ω − bext)
+ 1

h̄2(ω − bext)2

× {χc(q, ω) − 〈[C−
q , S+

−q]〉} (A.6)

where h̄bext = 2μB Bext, C−
q = [S−

q , H1] and

χc(q, ω) =
∫

dt〈〈C−
q (t), C+

−q〉〉e−iωt . (A.7)

For small q and ω, χ is dominated by the spin wave pole, so
that

χ(q, ω) = − 2〈Sz
0〉

h̄(ω − bext − ωq)
(A.8)

where bext + ωq is the spin wave frequency, in general
complex corresponding to a finite lifetime. Following [24] we
compare (A.6) and (A.8) in the limit ωq � ω − bext to obtain
the general result

ωq = − 1

2〈Sz
0〉h̄

{ lim
ω→bext

χc(q, ω) − 〈[C−
q , S+

−q]〉}. (A.9)

Edwards and Fisher [24] were concerned with Re ωq whereas
Kamberský [25] derived the above expression for Im ωq for the
case q = 0, and zero current flow. His interest was Gilbert
damping in ferromagnetic resonance. Essentially the same
result was obtained earlier in connection with electron spin
resonance, by Mori and Kawasaki [26], see also Oshikawa and
Affleck [27]. Since S−

q commutes with the potential term V ,
even in the presence of disorder, we have

C−
q = [S−

q , H1] = [S−
q , Hk] + [S−

q , Hso]. (A.10)

For simplicity we now neglect spin–orbit coupling so that

C−
q = [S−

q , Hk] = h̄q J −
q (A.11)

where the last equation defines the spin current operator J −
q .

For a general system, with the nth electron at position rn with
spin σ n and momentum pn ,

S−
q =

∑
n

eiq·rn σ−
n , Hk =

∑
n

p2
n/2m. (A.12)

Hence, from equations (A.11) and (A.12),

〈[C−
q , S+

−q]〉 = N
h̄2q2

2m
+ 2h̄

∑
n

〈σ z
n vn〉 · q (A.13)

where N is the total number of electrons and vn = pn/m is the
electron velocity, so that e

∑
n〈σ z

n vn〉 is the total spin current.
Hence from equation (A.9), we find

ωq = h̄q2

2〈Sz
0〉

[
N

2m
− lim

ω→bext

χJ (0, ω)

]
+ Bq

h̄
(A.14)

with
B = h̄μB P J/ems. (A.15)

This expression for B has been obtained by Bazaliy et al [2]
and Fernández-Rossier et al [14] for simple parabolic band,
s–d and Hubbard models. The derivation here is completely
general for any ferromagnet, even in the presence of disorder
due to impurities or defects, as long as spin–orbit coupling is
neglected. Equations (2) and (A.15) are both valid for arbitrary
bext, so that in equation (33) we must have α1 = 0.

Note added in proof. Tserkovnyak et al [28] have recently given a detailed
discussion of the coefficient α′

2 in equation (1).
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